

Rediscovering fire

This article is written as preparation material to the Rediscovering fire - on
designing portable multi-language libraries talk at NDC Techtown [https://ndctechtown.com/talk/rediscovering-fire-on-designing-portable-multi-language-libraries/],
and will largely describe the lessons learned designing and maintaining the
segyio library. The topics disussed will have wider applicability, but will
point to what, how, and why things were done as they were in segyio. In
essence, this document will attempt to articulate some insights in designing
libraries for libraries.

As the name implies, these lessions aren’t new. Segyio draws inspiration from
several libraries, and relies on the experience of thousands of developers of
the past and the present.

Sections

	Context and motivation
	Context and requirements

	Goals

	About SEG-Y

	Summary

	Allocation and memory management
	Half of Common Lisp

	Allocate-and-return

	Thou shalt not assume how memory is managed

	Summary

	Opaque types
	Lifetime model

	Storage and representation

	Boilerplate and flexibility

	Opacity is not abstraction

	Alternatives

	Summary

About segyio

segyio [https://github.com/statoil/segyio/] is a fairly small library for reading and writing seismic data in the
SEG-Y [https://en.wikipedia.org/wiki/SEG-Y] format. It consists of a fairly low-level core library, targeting
library developers and written in C99, and multiple end-user facing libraries,
most notably Python.

Indices and tables

	Index

	Module Index

	Search Page

Context and motivation

This section discusses context, requirements, and motivations for segyio. If
either of these had been different, segyio would have been very different
today.

Context and requirements

SEG-Y [https://en.wikipedia.org/wiki/SEG-Y] is a fairly old standard, built around in an age of magnetic tape and
IBM-centric hardware. It has a lot of quirks, and there are lot of
standard-violating files out there. We saw several implementations being
developed and maintained by lone geoscientists scattered around the company,
with varying quality and completeness. It’s also a very duplicated effort, and
a huge time sink.

So we wanted a high-quality solution that would just take the pain away. But
this raises the issue of language and operating system.

At the time, Python was seeing a huge surge in popularity in the Equinor
geoscience community, so doing the implementation in pure Python was
considered. It was decided against, because:

	We have tons of applications in C++, C, Java, .NET, matlab, and other
languages, that could leverage reading SEG-Y files, meaning essentially a
port from Python

	Python’s fairly slow, and may not be suitable for computationally-intensive
problems

	Shuffling bytes isn’t Python’s strong suit

In fact, an original requirement was also a matlab library (which has since
largely been abandoned). Replicating SEG-Y weirdness across languages was not
very appealing, so a C core library was chosen, because virtually all languages
have FFIs [https://en.wikipedia.org/wiki/Foreign_function_interface] to C.

That way, in order to read SEG-Ys in a new language, say Julia, it’s “only”
necessary to implement the Julia -> segyio bit, and the Julia implementation
shouldn’t need to worry too much about SEG-Y details. Geoscientists don’t have
to write C code, but will have more suited libraries at their disposal.

Multiple high-level language implementations sharing a common core was always a
part of the segyio vision.

Goals

The requirements arise from the business case, and from the need of our end
users, but segyio also has some technical goals:

	Natural

	User-facing libraries should feel like they were written in that language

	Fast

	Speed matters, and faster libraries means faster programs

	Portable

	Useable on different architectures, and different operating systems

	Stable

	Functioning code should remain functioning, and upgrading should always be
safe

Natural

A lot of libraries that wrap modules written in a different language have a
distinct feel about them. In the Python world, an excellent example of this
is the curses [https://docs.python.org/3/library/curses.html#module-curses] module, which directly maps onto the underlying C library. While
this makes the module immediately familiar to anyone that has written curses
code in C, it pretty much feels like writing C with Python syntax.

import curses
from curses.textpad import Textbox, rectangle

def main(stdscr):
 stdscr.addstr(0, 0, "Enter IM message: (hit Ctrl-G to send)")

 editwin = curses.newwin(5,30, 2,1)
 rectangle(stdscr, 1,0, 1+5+1, 1+30+1)
 stdscr.refresh()

 box = Textbox(editwin)

 # Let the user edit until Ctrl-G is struck.
 box.edit()

 # Get resulting contents
 message = box.gather()

Code example from curses docs [https://docs.python.org/3/howto/curses.html].

To be fair, Curses is pretty old, and has held up rather well for the video
terminals it targets. Let’s look at a few examples that I believe feel right,
and appreciate what they do right.

>>> r = requests.get('https://api.github.com/user',
 auth=('user', 'pass'))
>>> r.status_code
200
>>> r.headers['content-type']
'application/json; charset=utf8'
>>> r.encoding
'utf-8'
>>> r.text
u'{"type":"User"...'
>>> r.json()
{u'disk_usage': 368627, u'private_gists': 484, ...}

Code example from request docs [https://pypi.org/project/requests/]

>>> A = np.array([[1,1],
... [0,1]])
>>> B = np.array([[2,0],
... [3,4]])
>>> A.shape
(2, 2)
>>> A*B # elementwise product
array([[2, 0],
 [0, 4]])
>>> A.dot(B) # matrix product
array([[5, 4],
 [3, 4]])
>>> np.dot(A, B) # another matrix product
array([[5, 4],
 [3, 4]])

Code example from numpy quickstart [https://docs.scipy.org/doc/numpy/user/quickstart.html]

Requests has reasonable defaults, and the most simple use case, just fetching a
remote web site, is as simple as requests.get(url). All other
configurations are keyword arguments. Results of queries have a fairly limited
set of interesting things to look at afterwards (given by the HTTP protocol),
so they’re all properties on the returned object, no awkward get methods.
Callers can inspect what they care about as they see fit (status, encoding
etc.). The dynamic parts of a result, contents of the header, are read with the
ubiquitous dict.

Numpy share the same attributes, but for maths and not HTTP. Granted, numpy
code can quickly get rather wieldy, but that’s often a result of its
(wonderful) composability and the sometimes involved nature of the
transformations users want to express, and is not something inherent to numpy
code. Largely, however, things do work as you would expect, and there certainly
isn’t a feeling that it simply wraps a Fortran or C library.

For segyio, the goal was to make the library feel natural. Things should work
as you’d expect in Python - arguments and types should be robust and work, the
right errors should be raised, and combining features should result in what
you’d expect. It should also integrate well with other popular libraries, most
importantly numpy [http://www.numpy.org/]. Consequently, it was deemed important not to have things
work in a specific way just because the core library worked that way - Python
could make its own decision and design choices.

This has, to me, some surprising implications when designing a C library. A lot
of interesting issues, things we often take for granted, come up - what if you
can no longer assume stderr is available for warnings? What if you can no
longer ask for more memory? What if your host wants to run you in 1000
threads?

Simply put, just exposing the underlying C functions to Python doesn’t work
very well, and a Python-like C library is very awkward to use in a language
with a different set of assumptions (C++, Haskell, Rust and the MLs, and lisp
comes to mind). A well designed Python library feels as if it’s Pythons all the
way down.

Fast

Speed is important. A well-written library will likely see much use, so there’s
a substantial return-of-investement. More importantly, it allows for even more
data processed faster, which means money.

As a library writer, you never really get to assume how fast is fast enough
for your clients, because you never know what requirements they have. You also
don’t really know what infrastructure and runtimes are around (save your host
language), so a lean core is very useful. That also means sometimes choosing
between a safer design and a faster design.

That, in practice, means only a handful of languages are really an option. For
segyio, we ended up with plain C99 for the core itself, but if that choice came
up again it would be C++.

The argument at the time was that reading SEG-Ys is mostly shuffling bytes and
dealing with various floating-point representations (most of our files are in
IBM floats), and that C++ helps little in that regard. C++ also means extra
care must be taken not to allocate, or raise exceptions by accident.

Since then, I’ve changed my mind - byte shuffling is not harder in C++, and the
availablity of templates, standardad algorithms, destructors just makes
some things so much easier, and I’ve lost count of how many times I thought to
myself this would’ve been so easy in C++, at no real loss of leanness and
speed. The interface itself would still be plain C, regardless.

Portable

We know that most of our machines today are amd64 linux, but seismic processing
might occasionally be done on different architectures and operating systems.
For us, this portability was important enough to warrant C (or C++), which
granted were top choices anyway, but now left out languages like D and Rust.
Available skillsets and experience helped that choice.

For reference, since its inclusion in debian, segyio runs on different
architectures [https://packages.debian.org/sid/libsegyio1]:

	alpha

	amd64

	arm64

	armel

	armhf

	hppa

	i386

	kfreebsd-amd64

	kfreebsd-i386

	m68k

	mips

	mips64el

	mipsel

	powerpcspe

	ppc64

	ppc64el

	s390x

	sh4

	sparc64

	x32

Stable and future proof

A stable API and ABI helps keeping users happy, as it makes upgrades safe,
efficient, and easy. It is very annoying when code that used to work and was
correct stops working, and we never want our users to be careful with upgrades.

Of course, this introduce a new set of problems, because now you need to write
core functionality in such a way that the need for breakage is minimal. It’s
especially problematic when it turns out a function didn’t quite get it
right, and just adding one parameter, or changing its type, would fix it. Which
it would, but it would also break downstream programs.

In Python, it’s usually fairly easy to make backwards compatible changes, in C
it’s a bit harder. This aspect in particular will be discussed in length in
later sections.

Multiple host languages

Finally, one of the original requirements of segyio was to make it useable for
Matlab. It still is, although it’s rough, riddled with legacy, and not really
used by us at (a comedy troupe ate its lunch). But being able to use multiple
languages was crucial to us, which heavily influenced the design.

At the time of writing, a C++ front for segyio is in development. It’s shaping
up to look very different from the C core library, and intended for downstream
consumption. We’ve worked it into a few in-house projects, but it’s a living
example of the flexibility and repurposability of the core library design.

About SEG-Y

The SEG-Y [https://en.wikipedia.org/wiki/SEG-Y] format was standardised in 1975, in an age where IBM dominated the
computer industry, and magnetic tape was the primary mean of data exchange.
Because of this, the standard details a lot of aspects that consumers don’t
really care that much about. What they do care about is the ability to access
the data stored in this format, in a way that’s quick and easy and robust.

Summary

This section fleshes out the context and requirements that underpins the design
of segyio, and provides a rationale for decisions made, that will be discussed
in later sections. In short, segyio should be:

	Useful for creating new libraries (in different languages)

	Fast

	Portable

	Stable

Allocation and memory management

This section discusses allocation, resource management, and the resulting
effect on overall library design.

Half of Common Lisp

C, and its standard library (I’m deliberately not considering common unix
libraries here), are pretty tiny. For a very long time, large C programs have
assumed that virtually nothing pre-written was available, and consequently
implemented common things for their projects. This is so common it’s known as
Greenspun’s tenth rule [https://en.wikipedia.org/wiki/Greenspun%27s_tenth_rule]:

Any sufficiently complicated C or Fortran program contains an ad-hoc,
informally-specified, bug-ridden, slow implementation of half of Common
Lisp

I think that a good example of this is the PETSc [https://www.mcs.anl.gov/petsc/] library, a popular package in
C for scientific computing. Here’s a snippet initialising a vector x, and
copying into u and b.

VecCreate(PETSC_COMM_WORLD,&x);
PetscObjectSetName((PetscObject) x, "Solution");
VecSetSizes(x,PETSC_DECIDE,n);
VecSetFromOptions(x);
VecDuplicate(x,&b);
VecDuplicate(x,&u);

Code example from PETSc tutoral ex1 [http://www.mcs.anl.gov/petsc/petsc-current/src/ksp/ksp/examples/tutorials/ex1.c.html]

Granted, it’s fairly straight forward if you’re writing your application in C,
but let’s assume we want to use this vector in a Python program. Python has no
concept of PETSc’s custom (and opaque) vector type, so to make use of it, the
extension must implement a new Python class that either:

	Implements methods that map onto the Vector functions in PETSc

	Implements Python’s Container protocol (__getitem__, __len__ etc),
massage the arguments and forward to PETSc, and allows information to flow
back into Python

While 1. is simple, and familiar to a seasoned PETSc dev programming in Python,
it lends itself to a clumsy Python library. The REPL [https://en.wikipedia.org/wiki/Read-eval-print_loop] won’t print data
nicely, it won’t be usable in for _ in _ contexts, and len(x) fails.
Numpy is the de facto standard package for scientific computing in Python, and
one of its major selling points is how similar to Python’s own list ([])
the numpy.ndarray really is. Programs using this library will technically
be Python, but largely feel like C with Python syntax.

Option 2. is a lot of work, but the resulting library ends up looking like
Python code. Since PETSc protects types behind a pointer, no third party
library can be leveraged to help this work, or automate it, and it won’t nicely
integrate with Numpy or other libraries.

None of these solutions solve the issue of resource management, and a
considerable amount of code will have to be commited to bridge the gap between
the lifetime models of PETSc and Python. That work can be delegated to user
(Python) code, but if you have to carefully manage memory, you might as well
write C.

There’s another problem neither of these approaches solve: what if I want to
return a Numpy array from a function? Granted, the arrays can be copied inside
python (assuming option 2), but that might introduce a significant overhead, or
place a potential extra burden on clients.

Both of these solutions mean that a substantial amount of code has to be
written to leverage the C core, and solutions that make the final Python
library worse.

Allocate-and-return

segyio reads chunks of seismic data, traces, from a file. The very first
prototype of segyio (that part never made it to the published repository)
looked something like this:

float* read_trace(segy_file*, int trace_number);

Which, granted, is pretty simple, but has some glaring issues:

	How do I release? free? delete? Is it managed internally?

	Buffers can no longer be reused, so every read must pay the price of
allocation

	Multiple traces can no longer be stored in the same allocation.

	How is this float-array exposed as a Python object?

It has some additional problems, but they will be discussed in other sections.

This was one of the first issues that radically changed the design of segyio,
because SEG-Y files often describe geometric volumes, cubes, of the
subsurface. This introduces the concept of intersecting lines, which in the
file is a set of consecutive traces (which go in depth).

Simplified, reading a line would result in a function like this:

float* read_line(segy_file* fp, int line_number) {
 int trace_length = fp->trace_length * sizeof(float);
 int start = start_of_line(fp, line_number);
 int end = start + fp->line_length;

 float* line = malloc(trace_length * fp->line_length);
 int pos = 0;

 for(int i = start; i < end; ++i) {
 float* trace = read_trace(fp, i);
 memcpy(line + pos, trace, trace_length);
 free(trace);
 pos += trace_length;
 }

 return line;
}

Because read_trace allocates, which is convenient in calling C code as the
caller doesn’t need to know upfront how much memory is needed, it is now
impossible to use this function in any other context than reading single
traces, without taxing the allocator heavily, or copying all the data twice.

While it’s convenient to never worry about array sizes and pre-allocation,
and simply receive nicely organised memory, remember that the consumers are
other library writers. It is safe to assume they can pre-allocate and manage
memory needed - in fact, they often want to lay out memory in a certain way,
or merge several C operations into a single, larger user-facing function.

Thou shalt not assume how memory is managed

The previous paragraph touches on the first rediscovery made in segyio, a
detail I have sinced noticed is prevalent in a lot of the older libraries -
almost all functions take their memory buffer as an argument, and few functions
(visibly) allocates. Some examples from the C standard library:

size_t fread(void* ptr, size_t size, size_t nmemb, FILE* stream);
int sprintf(char* buffer, const char* format, ...);
char* strcat(char* dest, const char* src);
void* memcpy(void* dest, const void* src, size_t n);

When designing libraries for libraries, you do not get to assume how your
client manages resources. Maybe they want a memory pool, maybe stuff is ref
counted, maybe there’s a tracing gc somewhere, maybe they prefer a large,
up-front allocation, or have some other, exotic allocator. If your target group
is application writers, some assumptions on their behalf is often welcome.

Memory is still necessary for a lot of functions to operate. In segyio, only
one function (publically [1]) allocates, the segy_open function. All other
functions assume memory is allocated and meet expectations, and are managed
externally. One common criticism of C and its standard library is its unsafety,
which is very real, and requiring callers to manage all memory does nothing to
help safety.

This places a larger burden on developers, but in return gives a lot of
flexibility. In segyio’s Python extension, all memory is allocated by creating
empty Numpy array in Python, so even in the Python-C layer no allocation is
done. Numpy ensures all memory is properly registered with the Python runtime.
In fact, the extension code does not know at all that it is Numpy that provides
the memory - all it sees is a buffer object [https://docs.python.org/3/c-api/buffer.html], and the Python code is free to
replace Numpy with something else. This has proven to scale very well for
segyio, where resource allocation has been rewritten at least three times
(invisibly to the user).

For a motivating example, consider the following Python program, which prints
the mean value of every individual trace:

for trace in f.trace[:]:
 print(trace.mean())

This allocates one, 1, buffer under the hood, and reuses that, since it knows
it’s in an iterable context, and that no modifications of the trace
variable will carry on to the next iteration. I measured this by running it ten
million times on a simple file, and found that re-using the buffer doubled
the speed of the program.

This would not have been possible if the core did not work with caller-provided
buffers.

Since memory is now assumed to always be there, and correct, the tedious manual
memory management of C goes away, which does make a lot of code a lot simpler,
at the cost of documenting expectations and requirements.

Summary

This section discussed the drawbacks of visible allocations. A core library
should not return freshly allocated memory from functions with the expectation
that callers release it later. It demonstrates why libraries for libraries
should always assume its memory is externally managed, and functions that need
dynamic memory should take it by argument.

Briefly, assuming memory is allocated, managed, and correct, ensures that:

	The library is simple to implement

	Few assumptions about end usage

	Provides users with flexibility to make the right choice for the target
environment

How to interact with users is drastically different in Python, C++, Common Lisp,
and Julia, and the core library should reflect that.

[1]
segy_readsubtr and segy_writesubtr will allocate and free upon
when reading non-contiguous ranges, unless the rangebuf parameter is
specified, in which case it will assume it is large enough, and use
that.

Opaque types

This section discusses the opaque [https://en.wikipedia.org/wiki/Opaque_data_type] type, an object without its data structure
externally defined in an interface. It is the data hiding technique in C,
and has been used extensively throughout history. In fact, it’s an integral
part of C and unix’ defining feature: the FILE [http://man7.org/linux/man-pages/man3/fopen.3.html].

While this technique is very useful for protecting implementation details and
hiding some possibly moving parts, the opaque type has some jarring problems
when writing core libraries.

Lifetime model

The main drawback is that an opaque type forces you to write matching
alloc and destroy functions, because only one C source file can see the
definition. It necessitates a heap allocation in C.

This means every opaque type needs to have a wrapping object in the host
language dedicated to managing a pointer, forcing the C model onto the host
language. While this is usually ok in C++ (except its tiresome to write wrapper
objects), there is a less clear notion of lifetimes in most garbage collected
languages. Additionally, now extra code needs to be run during clean-up,
instead of a pure deallocation.

Consider this example in C++:

class A {
public:
 A() : opq(opq_default_alloc()) {}
 A(int arg) : opq(opq_int_alloc(arg)) {}

 int readval() { opq_readval(this->opq); }

 ~A() { opq_destroy(this->opq); }

private:
 opaque* opq;
};

If opq wasn’t opaque, but rather a collection of automatic variables, the
destructor ~A() and the default constructor A() can be defaulted. But
the bigger problem is the (defaulted) copy constructor and = operator.

A a;
if(true) {
 A b = a; // opq shared between a and b
} // b destroyed, opq_destroy called

a.readval(); // oops, opq_destroy already called on b.opq

Not only is the extra indirection costly, it requires more boilerplate to make
C++ behave like C++. The story is similar for many languages, such as Julia [https://julialang.org/]:

mutable struct data_trace
end

function segyio_readtrace(fp::segy_file, n::Integer)
 output_ptr = ccall(
 (:segy_readtrace, :segyio), # C function and library
 Ptr{data_trace}, # output type
 (Ptr{segy_file},Cint), # input types
 fp, n # input vars
)
 if output_ptr == C_NULL # Could not open file
 throw(FileOpenError())
 end

 # register cleanup with runtime,
 # but the actual call may be delayed
 finalizer(output_ptr, segy_trace_free)
 return output_ptr
end

function segy_trace_free(p::Ref{data_trace})
 ccall(
 (:segy_trace_free, :segyio),
 Void,
 (Ref{data_trace},),
 p
)
end

Adapted from the Julia documentation [https://docs.julialang.org/en/stable/manual/calling-c-and-fortran-code/index.html#Some-Examples-of-C-Wrappers-1]

Exactly when the trace is free’d is up to the Julia runtime. If the handle
wasn’t opaque, but just a regular array, a block of (aligned) memory, then:

	The finalizer is not necessary

	No extra action is needed for cleanup

	A Julia object is already available

	No large set of alloc/free functions

	Traces behave like Julia arrays

Storage and representation

The only way to use an opaque type is to store and pass around a pointer to the
object. While it is true it provides ABI [https://en.wikipedia.org/wiki/Application_binary_interface] stability it impossible to use native
data types for the components, and that makes it harder to write custom
behaviours from host languages as well.

Consider this example from segyio: if a file describes a 3-dimensional
volume, a cube, it has a set of assosicated inline and crossline labels that
describe the resolution or ticks in the horizontal directions. In Python,
this is stored as two Numpy arrays, which means:

	They can be printed and formatted by Python

	They can be inspected with any python syntax or feature (like debuggers)

	They can be replaced by any other type implementing an array

	They support the full range of Numpy features

	They carry Python semantics and behave nicely and as expected

	They are constructed, managed, and cleaned up automatically

The segyio core library does not know (or care) that Numpy is responsible for
storing the line labels. If the labels had been hidden behind an opaque type,
say, geometry, none of this would’ve just worked, and possibly never been
exposed to users of the Python library.

Not having this hidden behind a pointer means that it can also be generated
as-need. As long as the correct representation is available when the function
is called, the core library does not care that it is encoded in different
structures and assembled just-in-time. This gives library developers
flexibility to write the right library for their users.

Remember, the clients are other library developers, and it’s ok to assume
they’re reasonably responsible. In Python, being able to facilitate core
features like slicing is paramount, and maybe Python expects some error
recovery that’s just not that interesting in Julia. By exposing more data with
a disclaimer, developers can write better libraries without requiring explicit
support from the core library.

Boilerplate and flexibility

The only way to get anything out of an opaque handle is a function, and if
you need to do something that the core author didn’t think of you’re lost.
This happens to be the strength of the opaque type design, the library author
can guarantee integrity, so you take the good with the bad.

The opaque type hides data. It does so at two levels:

	From the compiler

	From the developer

The first case is very appealing for stability, as previously mentioned, as it
enables changing the data layout without recompiling or modifiying existing
code, at the cost of maybe disallowing some optimisations, and introducing some
extra indirection.

But hiding data from the developer means stripping power, which when used
responsibly greatly improves the quality of the end-user facing library. By
deferring the choice of storage of primitive, raw data, developers can choose
what makes most sense for their library. In Python, most data that could be hid
inside the segy_file handle, is currently [1] stored this way:

struct segyiofd {
 PyObject_HEAD
 autofd fd;
 long trace0;
 int trace_bsize;
 int tracecount;
 int samplecount;
 int format;
 int elemsize;
};

This is how arbitrary data is embedded inside Python objects, when the objects
are defined inside a Python extension, and this data is buried inside the
object. The autofd class is a simple unique_ptr [https://en.cppreference.com/w/cpp/memory/unique_ptr] like class that automates
some common operations. In use, it’s reminiscent of C++:

PyObject* metrics(segyiofd* self) {
 static const int text = SEGY_TEXT_HEADER_SIZE;
 static const int bin = SEGY_BINARY_HEADER_SIZE;
 const int ext = (self->trace0 - (text + bin)) / text;
 return Py_BuildValue("{s:i, s:l, s:i, s:i, s:i, s:i}",
 "tracecount", self->tracecount,
 "trace0", self->trace0,
 "trace_bsize", self->trace_bsize,
 "samplecount", self->samplecount,
 "format", self->format,
 "ext_headers", ext);
}

This function builds a dictionary of certain structural properties of the file.
There’s no need to call functions like segy_get_tracecount(fp), but segyio
provides functions to compute all these values - it just doesn’t make a
decision on how to store them. For completeness, the functions to compute all
the data needed for this dictionary (same order as the dict):

int segy_traces(segy_file*, int*, long trace0, int trace_bsize);
long segy_trace0(const char* binheader);
int segy_trsize(int format, int samples);
int segy_samples(const char* binheader);
int segy_format(const char* binheader);

In short, by exposing more data as data instead of hiding it behind functions
on an opaque handle, it’s simpler for the developer to choose low-boilerplate
highly efficient native idioms for the target environment, instead of having to
deal with the data hiding idioms of the core language.

Opacity is not abstraction

Often, the opaque type is justified as an abstraction, something like users
don’t have to worry about exact representation. While true, opacity implies
indirection, but indirection itself is not abstraction. There are many
libraries and programs that use opaque types liberally, and then end up writing
tons of functions to control every aspect of it.

An example is the glib GArray [https://developer.gnome.org/glib/2.56/glib-Arrays.html]. This is not a criticism of glib; glib targets C
application developers, and segyio targets library developers. This is GArray’s
interface:

GArray* g_array_new()
GArray* g_array_sized_new()
GArray* g_array_ref()
void g_array_unref()
guint g_array_get_element_size()
#define g_array_append_val()
GArray* g_array_append_vals()
#define g_array_prepend_val()
GArray* g_array_prepend_vals()
#define g_array_insert_val()
GArray* g_array_insert_vals()
GArray* g_array_remove_index()
GArray* g_array_remove_index_fast()
GArray* g_array_remove_range()
void g_array_sort()
void g_array_sort_with_data()
#define g_array_index()
GArray* g_array_set_size()
void g_array_set_clear_func()
gchar* g_array_free()

The GArray is not comletely opaque, it exposes its data as a gchar*
pointer. For the sake of the argument, let’s assume there also is a
g_array_raw function that returns this pointer from the opaque GArray.

This module does very little to abstract over the C array [2], a chunk of
consecutive elements, because abstraction is about removing details. All the
details are still there:

	Appending is faster than insertion

	Elements are stored contiguously

	It has a finite size

	It has no extra structure or invariants (like the stack, for instance)

What it does is automate some common operations over C arrays. This is
useful, but it’s not an abstraction. In a library like segyio, introducing our
own type that did not abstract over anything, would only make interoperating
with Python more cumbersome. The automation is appealing, but is doable
without opacity.

Alternatives

Opaque types aren’t bad, and I’m not advising against the use of opaque data
types. They’re great, but when writing a library for other libraries to
consume, I think they do more harm than good for most data types. The only
real exceptions are file handles and other remote resources.

Instead of reaching for the opaque type, consider:

	Narrow the scope of the module

	Passing what would be embedded as explicit function arguments

	Add reserved fields for later use in structs and functions

Finally, having interfaces without opaque types means its often easier to test.
Since an arbitrary state can be constructed without going through the machinery
of the opaque handle, or even bypassing security mechanisms, tests can be more
to the point and accurate.

Summary

This section disucssed the problems of designing too much around the opaque
data type. While a very useful technique, it often ends up counter-productive
when designing for libraries, because the final say in anything, and every
conceivable feature, has to be implemented in the core C library.

It demonstrates why having stuff often hidden behind pointers is useful when
represented as scattered, free variables. This all relies on users being
library developers, that have to map between a core library’s view of the
world, and the assumptions of their target environment.

[1]
2018-07-10

[2]
The C array is already a pretty good abstraction over a segment of bytes

Index

 nav.xhtml

 Table of Contents

 		
 Rediscovering fire

 		
 Context and motivation

 		
 Context and requirements

 		
 Goals

 		
 Natural

 		
 Fast

 		
 Portable

 		
 Stable and future proof

 		
 Multiple host languages

 		
 About SEG-Y

 		
 Summary

 		
 Allocation and memory management

 		
 Half of Common Lisp

 		
 Allocate-and-return

 		
 Thou shalt not assume how memory is managed

 		
 Summary

 		
 Opaque types

 		
 Lifetime model

 		
 Storage and representation

 		
 Boilerplate and flexibility

 		
 Opacity is not abstraction

 		
 Alternatives

 		
 Summary

_static/file.png

_static/down-pressed.png

_static/down.png

_static/up-pressed.png

_static/minus.png

_static/plus.png

_static/up.png

_static/comment-bright.png

_static/comment-close.png

_static/ajax-loader.gif

_static/comment.png

